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The 3 ingredients

1. Remote sensing
-Looking the earth from above

2. Land use following deforestation/Deforestation drivers
-Human activities

3. Deep learning
-Automatic image understanding

Large scale cropland



Importance
of forests
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Land activities causing deforestation

* Large scale cropland

* Small scale cropland

e Cashew

Oil palm

Rubber

Coffee




Deforestation free Initiatives

* National Reporting — Supporting post-Paris land use sector mitigation

e EU’s Deforestation-Free Supply Chain Regulation

e EU’s US Fostering Overseas Rule of Law and Environmentally Sound Trade
(FOREST) Act

e UK Environment Act: Use of Forest Risk Commodities in Commercial
Activity (Schedule 17)

e California Climate Corporate Accountability Act

* New York Deforestation-Free Procurement Act

https://www.aim-progress.com/storage/resources/Ropes%20&%20Gray_AlM-Porgress_Corporate%20Social%20Responsibility%20Legislation%20Summary%20(February%202022).pdf



Need for automated large scale land use monitoring

Sample-based interpretation , Forest loss Large area prediction
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Input image Predicted land use

Deep learning model

| Large scale cropland

i B Pasture
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Going back to our previous example
Large scale croplan N | ~ Cacao I | Oil palm
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Important questions

1. How can we use deep learning for assessing land-use following
deforestation using remote sensing data?

2. How can these methods be applied to analyse land-use following
deforestation in different national/regional context?

3. How can we leverage heterogeneous reference data to increase the
thematic detail of land-use following deforestation mapping? What are the
challenges and future opportunities?



Qn1l: Spatial and temporal aspect of the land use following deforestation

| | Small-scale cropland

. Regrowth/Other land with tree cover



nl: How can we use deep learning for assessing land-use following
deforestation using remote sensing data?

Background
Pantropical case study

Al/deep learning models using _
spatial and temporal information
from dense Landsat time-series to
predict land use activities driving
deforestation

Open source platform in SEPAL
and GEE

tation monitoring @

mative and effect




Qn1l: How can we use deep learning for assessing land-use following
deforestation using remote sensing data?
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FAO, (2000)



Qn2: Applying deep learning to analyse land-use following deforestation at national scale

(Ethiopia)
NEXT

Adapt deep learning model to Follow-up land use classes

Ethiopian context

Land use classes

Method Agriculture
SEPAL _
Forest loss 2010 - 2014
Land use following deforestation 2016
Planet data, Landsat & Sentinel 2
Other open-source data for

calibration and validation Plantation forest

Other land with tree cover




Qn2: Applying deep learning to analyse land-use following deforestation
at national scale (Ethiopia)
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Land use following Deforestation

Masolele et al., (2022)

Link to GEE app:


https://robertnag82.users.earthengine.app/view/deforestationdriverethiopia

Qn2: Applying deep learning to analyse land-use following
deforestation at national scale (Ilvory Coast)

Deforestation - regrowth dynamics and follow-up land-use in
lvory Coast ‘Foréts Classées’
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RQ2: Country scale land use change monitoring (lvory Coast)
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Qn3: Leveraging heterogeneous reference data to map lanc

use following deforestation at continental scale
o Tuscr [rene e [ 5500 [roses | otwrc [ o | coree [ semement |17 | woter | b | rummer | comow | como

FAO 2010 global Remote Sensing Survey X X X X X X X

Crowdsourced deforestation drivers (IIASA)
(Bayasa et al., 2022) X X X X X
http://pure.iiasa.ac.at/id/eprint/17539/)

Masolele et al,. 2022 (Ethiopia)

ICRAF, Econometric

NAFORMA (Tanzania)
Large-scale farms and small holder (Jann et
al,. 2018) (Zambia)

Global Map of Qil Palm Plantations (Descale
et al., 2021)

Kenya GIS data (World Resources Institute -
https://www.wri.org/data/kenya-gis-data)

Namibia (Visual interpretation)
Ghana (Visual interpretation/online)

Google research open-buildings dataset
(https://sites.research.google/open-
buildings/)

https://ipisresearch.be/home/maps-
data/open-data/ (Mining)

Landuse data Nigeria
(https://grid3.gov.ng/datasets)



https://ipisresearch.be/home/maps-data/open-data/
https://grid3.gov.ng/datasets

Qn3: Leveraging heterogeneous reference data to map land use
following deforestation at continental scale
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Improvement of accuracies with active learning

43% —> 50% — 84%



Qn3: Continental scale land use change monitoring (Africa)
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n3: Continental scale
land use change
monitoring (Africa)

https://robertnag82.users.earthengine.app/view/africalu

Large-scale cropland Pasture

Tea plantation

OilPalm

Other-land

Plantation forest
an with treecover

Settlement Mining



https://robertnag82.users.earthengine.app/view/africalu

Conclusion: Challenges & future opportunities

* We can use deep learning for mapping land-use following deforestation at a large
scale with good accuracy.

e Continental models performs better compared to the pan-tropical model.

* Increased spatial and thematic detail in monitoring land-use following deforestation
— (deep learning, Africa).

* Increased availability of cloud computing infrastructure provides an opportunity for
monitoring natural resources at global scale.

* We need to address the gap in availability of data related to land use change/drivers
of deforestation (annotated data specific for Al application).

e Pantropical near real-time tracking of deforestation and its corresponding direct
drivers.
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Qn2: Applying deep learning to analyse land-use following
deforestation at national scale (lvory Coast)

* Change detection (loss & regrowth) & follow-up land-use

e Use avocado algorithm to detect changes (Decuyper et al,. 2022)

* With deep learning we can attribute changes to different land-use

» Cacao, Cashew, water, Oil Palm, Rubber, Natural forest, Agriculture, Settlements, and Savanna

" Methodology
* Fine tune a DL model (Ethiopia) to attribute forest changes to different land-use (Ivorycoast)
using Use planet-NICFl images (2020-2022)
* Assess model accuracy based on independent test data
* Produce a wall-to-wall map of land-use after forest loss and regrowth based on forest classes
in lvory coast

e Assess map accuracy based on reference data from stratified random sampling .



Data & Method- Continental scale

Satellite data
Planet-NICFl mosaics data = 5m

Forest loss
Hansen forest loss 2001 — 2020

Reference land-use data
15 land use classes for 2001-2020

Method
Attention U-Net & Active learning

Output
Wall-to-wall map (2001-2020)
Land-use hotspots
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